
1

ECS 20 – Fall 2021 – Phillip Rogaway Sets

(((Have a feeling that I might not have talked about negating quantified formulas in one
class. Check.

PUSHING QUANTIFIERS
 ¬ (∀x φ) ≡ (∃x) (¬φ)
 ¬ (∃x φ) ≡ (∀x) (¬φ)

Negate this:

 (∃x)(∀ y) (y>x → ∃ z (z2 + 5z = y))

¬ (∃x)(∀y) (y>x → ∃z (z2 + 5z = y))
 (∀x) ¬ (∀y) (y>x → ∃ z (z2 + 5z = y))
 (∀x) (∃y) ¬ (y>x → ∃ z (z2 + 5z = y))

¬ (A → B) ≡ ¬ (¬A ∨ B) ≡ (A ∧¬B)

 (∀x) (∃y) (y>x ∧ ¬∃ z (z2 + 5z = y))
 (∀x) (∃y) (y>x ∧ ∀z¬ (z2 + 5z = y))
 (∀x) (∃y) (y>x ∧ ∀z(z2 + 5z ≠ y)))))

Set Theory
 predicate symbols: 2-ary ∈
 function symbol: ∅
We write a ∈ A instead of ∈ (a, A).
But that doesn't change that ∈ is a 2-ary predicate.

Seems very spare. What are other operators on sets, and how would we
define them?

Define
 union (∪)
 intersection (∩) _
 complement (Ac or A),
 symmetric difference ⊕
 set difference (A \ B or A – B)
formally, and illustrating with Venn Diagram:

2

Eg: "For any pair of sets, x and y, there a set x ∪ y that contains all of the
elements of x and y"
 (∀x)(∀y)(∃z) (∀u) (u∈z ↔ (u∈x) ∨ (u ∈ y))

We can do infinite unions and intersections too. Represented using the big-
cup and big-cap notation.
What is ∪ {2n}
 n ∈ ℕ

What is ∪ {(x,y): y=mx+b}
 m,b ∈ ℝ

Def: S = T iff x∈S ↔ x∈T
Def: S ⊆T if x∈S → x∈T

{a, b} ⊆{a,b,c} YES
{a, b} ⊆{a,b} YES
{a b} ⊆{a,d,e} NO
∅ ⊆ {a,b,c} YES (explain)
{∅} ⊆ {a,b,c} NO
{∅} ⊆ {{∅}} YES
T/F: for all S, ∅⊆ S: True

 a ∉A = ¬ (a ∈A)
 A ⊆B ::= (∀x)(x∈A → x∈B)
 A ⊇ B ::= (∀x)(x∈B → x∈A)

3

Can a set contain a set? Yes.
S = { ℕ, {2,3}, [0,1]}.

Can a set contain the empty set? Yes
In fact, we even use this for defining natural numbers!

0 ::= ∅
1 ::= {0} = {∅}
2 ::= {0,1} = {∅, {∅}}
3 ::= {0,1,2} = {∅, {∅}, {∅, {∅}}}
…

Algebra of sets

 A ∪ A = A A∩A = A
 A ∪ (B ∪ C) = (A ∪ B) ∪ C A ∩ (B ∩C) = (A∩B) ∩C
 A ∪ B = B ∪ A A∩B = B∩A
 A ∪ (B∩C) = (A ∪ C) ∩ (B ∪ C) A ∩ (B ∪ C) = A∩B ∪ A∩C
 A ∪ ∅ = A A ∩∅ = ∅
 A ∪ U = U A ∩U = A
 (Ac)c = A
 A ∪ Ac = U A ∩ Ac = ∅
 Uc = ∅ ∅c = U

 (A ∪ B)c = Ac ∩ Bc (A∩B)c = Ac ∪ Bc <-- De Morgan's laws

Let’s prove one of these—say the first of the two De Morgan’s laws.
Often one proves that two sets are equal by showing that each is a
subset of the other. But if we’re careful we can save some work by
chaining every thing together if if-and-only-ifs:

4

To show (A ∪ B)c = Ac ∩ Bc
it’s enough to show that
x ∈ (A ∪ B)c iff x ∈ Ac ∩ Bc .
Well
 x ∈ (A ∪ B)c iff
 ¬ (x ∈ A ∪ B) iff // Definition of the complement of a set
 ¬ (x ∈ A ∨ x ∈ B) iff // Definition of union of two sets
 ¬ (x ∈ A) ∧ ¬ (x ∈ B) iff // De Morgan’s law in the logical setting
 x ∈ Ac ∧ x ∈ Bc iff // definition of the complement of a set
 x ∈ Ac ∩ Bc // definition of intersection

Try to do the other De Morgan’s law analogously
 (A ∩ B)c = Ac ∪ Bc

Ways to specify sets

A = {2i+1: i ∈ ℤ }
 = {...,-5,-3,-1, 1, 3, 5,...} // But do we really all agree on the meaning of the …
 = {x: x is an odd integer}
 = {n: n∈ ℤ and ¬ (∃j∈ ℤ)(2j=n)}
Or

Let P be the set of prime numbers.
P = {n: n is a prime number}
P = {n ∈ ℕ: i | n → i =1 ∨ =n =-1 ∨ i =n ∨ i = -n}
P = {2,3,5,7,11,...}

Some important sets for math and computer science
ℕ = {1, 2, 3, ...} // some books include 0, some don't
ℝ = {x: x is a real number}
ℤ = {...,-2,-1, 0, 1, 2, ,...}
ℚ = {m/n: m, n ∈ ℤ, n ≠ 0}

[a.. b] integers between a and b, inclusive.
[a, b] reals between a and b, inclusive

[1..N] = {1, 2, …, N}
[N] = ℤ N = {0, 1, …, N-1}

5

Naïve set theory, where we describe sets with natural language, where
we write things like {x: …} with it being implicit the universe U from
which x is drawn, can sometime run into trouble. Examples:

(1) Sets can contains sets. Give examples. But can a set contain
itself? If we casually allow stuff like that, we encounter
Russell’s paradox: Let S = { x | x∉ x}
 Problem: is S∈ S iff S∉ S. Carefully go through the
reasoning for this contradiction.

(2) Let BIG be the largest natural number that can be described with
fewer than 200 characters of English text. //92 chars

 What’s wrong with this?

Let BIGGER be one more than BIG, where BIG is the largest
natural number that can be described with fewer than 200
characters of English text. //142 chars

What’s wrong is very subtle—really has to do with English being too
imprecise to do this. If you’re more careful about your descriptive
language, you can define huge number with this approach. It becomes
the “busy beaver function” of computability theory.

More operators on sets

Cartesian Product (= Cross product)

A × B = {(a,b): a ∈ A, b∈ B}
Use An for the n-fold cross product. A × A × ··· × A. How many times
will A appear? n-1, not n.

ℝ2 points in the plane

A × B × C: Thought of as ordered triples {(a,b,c): a ∈ A, b∈ B, c∈ C } as
opposed to pairs the first element of which is a pair.

6

A n for the n-fold cross product of A with itself to pairs the first element of
which is a pair.

How would you name an infinite collection of grid points in the plane? ℤ x ℤ

Practice: Name all lines on the plane in set notation.
S = {L: L is a line in the plane}

Or how about:
Lm,b = {(x,y) ∈ ℝ2: y = mx+b}
La = {(x,y) ∈ ℝ2: x=a}
S = { Lm,b : m,b ∈ ℝ} ∪ {La: a ∈ ℝ}

Sets of Strings (=Languages)

For computers, important sets correspond to those things that our
architectures natively manipulate:

BYTES = {0,1}8
WORDS32 = {0,1}32
WORDS64 = {0,1}64

These are sets of strings, a fundamental thing we consider sets of. What are
strings?

An alphabet is a finite, nonempty set. We call its elements characters.
 Eg: {0,1}, {0,1,2,3,4,5,6,7,8,9}, {a,b}, {a,b,…,z}, ASCII

A string is a finite sequence of characters.
 Eg: hello, “this big dog”, 10110011
 Includes the empty string, ε , the unique string of length 0.
There’s a basic operation on strings, concatenation. You stick them
together. Hello ○ There = HelloThere Routinely written with a
suppressed operator: x y = x ○ y.

An important kind of set in computer science is a set of strings. A set of
strings is called a language.

In formal language theory, when we write Ln we aren’t taking an n-wise
cross product but, instead, applying the concatenation operator n-1 times.

7

So we don’t end up with tuples; we end up with strings. You could regard
strings as tuples, of course. Yet there is a bit of difference in how we
understand these products:

{0,1} × {0,1} = {(0,0),(0,1),(1,0),(11)}
{0,1} ○ {0,1} = {00,01,10,11}

{0,00} × {0,00} = {(0,0), (0,00), (00,0), (00,00)}
{0,00} ○ {0,00} = {00,000,0000}

Not the same—even if we regard strings as tuples. Because 0 00 and 00 0
are treated as the same.

Representing Integers

You’re all familiar by now with representing unsigned numbers between 0
and 2n-1 in an n-bit value. How do we represent negative numbers, too?
Something that better approximates our abstraction of an integer?

The most natural answer, perhaps, is

1-bit n-1 bits
Sign Unsigned-Value

If we establish the convention of using a Sign bit of 0 for a positive value
and a Sign bit of 1 for a negative value, then we end up with bytes, for
example, representing [-127, …, 127]. But we also, rather strangely, end
up with one representation for a “positive zero” and one representation for a
“negative zero”. Illustrating it for nibbles instead:

0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7

8

1000 -0
1001 -1
1010 -2
1011 -3
1100 -4
1101 -5
1110 -6
1111 -7

The -0 is weird, but maybe we wouldn’t really care. On the other hand, if
we try adding 5 + (-3), for example, we get
 0101 = 5
 + 1011 =-3

0000 which isn’t the right answer
We can solve both problems at the same time by thinking of 0..15 as being
arranged in a circle, and using this to suggest what the “right” representation
is for -1, -2, …

 0000 = 0
 -1 = 1111 0001 = 1
 -2 = 1110 0010 = 2
 -3 = 1101 0011 = 3
 -4 = 1100 0100 = 4
 -5 = 1011 0101 = 5
 -6 = 1010 0110 = 6
 -7 = 1001 0111 = 7
 -8 = 1000

Moving clockwise is adding 1; moving counterclockwise is subtracting 1. In
some sense, -1=15; they are just different names for the same point. For that
matter, binary 1000 corresponds to +8 and to -8 both. But if we are going to
map the 16 points to a subset of the positive and negative integers, it makes
sense to make the switch-over where the leading bit of 1. Hence the
asymmetry of MININT=-8 while MAXINT=7 (for an 8-bit representation).
For 32-bits, we’d have MAXINT = 231-1 = 2147483647 and MININT = -231
= 2147483648. Not that big—2+ billion. 64-bits is more reasonable, with
263 being about 1019.

9

This is just suggestive, though; does it work?

 0101 = 5
 + 1101 =-3

 0010 = 2 which is the right answer. And so are the rest?

Here’s the recipe:

To compute –A:
 write the unsigned A, take the bitwise complement, the add 1

Why does this work? In a nutshell..
 __
 A + A = 11…11 = -1, so
 _
 A + (A + 1) = 0, whence the parenthesized quantity is
 -A
We will revisit this when we consider the world of integers mod N.

Representing Floating Point Numbers IEEE 754
IEEEFLOAT32 = {0,1}32
IEEEFLOAT64 = {0,1}64 = representing exponents -1022 .. 1023 (about 16
digits of accuracy)
 Weirder than you may think

• sign, significand (=coefficient), exponent (-1)sign ⋅ signficand⋅ 2exponentEEF

• + ∞ and −∞

• NaN (of various kinds)

• Zero can be +0 or −0

10

Example

85.125

85 = 1010101

0.125 = 001

85.125 = 1010101.001

 =1.010101001 x 2^6

sign = 0

1. Single precision:

biased exponent 127+6=133

133 = 10000101

Normalized mantissa = 010101001

We will add 0's to the right complete the 23 bits

The IEEE 754 Single precision is 0 10000101 01010100100000000000000

This can be written in hexadecimal form 42AA4000

11

2. Double precision:

biased exponent 1023+6=1029

1029 = 10000000101

Normalised mantisa = 010101001

we will add 0's to complete the 52 bits

The IEEE 754 Double precision is:

= 0 10000000101 010101001000

This can be written in hexadecimal form 4055480000000000

Special Values: IEEE has reserved some values that can ambiguity.

• Zero –

Zero is a special value denoted with an exponent and mantissa of 0. -0 and +0 are

distinct values, though they both are equal.

• Denormalized –

If the exponent is all zeros, but the mantissa is not then the value is a denormalized

number. This means this number does not have an assumed leading one before the

binary point.

• Infinity –

The values +infinity and -infinity are denoted with an exponent of all ones and a

mantissa of all zeros. The sign bit distinguishes between negative infinity and

positive infinity. Operations with infinite values are well defined in IEEE.

• Not A Number (NAN) –

The value NAN is used to represent a value that is an error. This is represented when

exponent field is all ones with a zero sign bit or a mantissa that it not 1 followed by

zeros. This is a special value that might be used to denote a variable that doesn’t yet

hold a value.

12

 William Kahan. Primary architect of the IEEE
754 floating-point standard

Or particular language:
 The set of all valid C programs
 The set of valid URLs
 The set of valid http programs

Sets with operations

What makes many sets interesting is the complement of operations that they
support. You can add integers. You can multiply them. You can add and
multiply WORD64 values. The operations are related but not the same. You
can do logical operations on Boolean values. Etc. When we think about
sets, we often want to think about the operations that go with them.

Sometimes these things are so tightly coupled that we think of the set along
with the operations as the thing, rather than the set itself. We identify the
key properties that the operation has, or is required to have. We do this both
in pure mathematics and in computer science. A couple examples:

Group A group is a set G together with an operation · where:

1) (x · y) · z = x · (y · z);
 2) there exists an element 1 in G such that x· 1=1 · x = x;
 3) for every element x there is an element y such that x · y = 1 = y · x

Sometimes we write the operation as + and the unit as 0. Whether we write it
one way or the other is irrelevant; the properties demanded are the same.
(But I think when we write it + there might be an implication that it’s
communitive.)

http://en.wikipedia.org/wiki/William_Kahan
http://en.wikipedia.org/wiki/IEEE_754
http://en.wikipedia.org/wiki/IEEE_754

13

Example: Booleans with xor.
Example: Equal-length binary strings with bitwise xor
Example: Integers with customary addition
Example: WORD32 with an operation of addition that throws
away the carry (that is, ℤ2^32)
Reals with multiply Explain why not
Example: ℝ - {0} under customary multiplication
Strings with concatenation Explain why not

But let me emphasize that a set, all by itself, does not have operations
defined on its elements

Dictionary ADT
and its realization with a list and with a hash table

Want to be able to Insert items into a dictionary and to Lookup if an item is
already in the dictionary. (Sometimes want to be able to Delete an item,
too.) For concreteness, think of the items we are inserting as strings.

Example: discover how many distinct words are in a book.

Implementation

1) A list of words, each one appearing at most once.
2) A hash table.

Explain how each works.
Show how to modify the hash table to do a frequency count.

Representing a collection of sets in a computers

A different game – we are going to maintain a collection of disjoint sets.
We want to be able to figure out if two things are in the same set, or in
different sets. For example, each point in the set might represent a person
and when we learn that person one and person two know one another –
maybe one calls or emails the other – then we combine them. Each set then
represents people that know one another through some path of knowing.

14

More interesting applications will come later, when we do graph theory.
You want to realize

• find(x) return a canonical name for the unique set containing x.
x and y are in the same set iff find(x)=find(y)

• union(x,y) merge the sets containing x and y.
• makeset (x) create a set containing the element x. Return a canonical

name for it

Naïve implementation: list of elements

Smarter – “union/find data structure”
Union by rank
Collapsing find.
Any sequence of n operations takes n (n) time, for an incredibly slows
growing function(n). [Omit big-O because not yet introduced]

Tarjan (1975)

function MakeSet(x)

 x.parent := x

 x.rank := 0

 function Union(x, y)

 xRoot := Find(x)

 yRoot := Find(y)

 if xRoot == yRoot

 return

 // x and y are not already in same set. Merge them.

 if xRoot.rank < yRoot.rank

 xRoot.parent := yRoot

15

 else if xRoot.rank > yRoot.rank

 yRoot.parent := xRoot

 else

 yRoot.parent := xRoot

 xRoot.rank := xRoot.rank + 1

The second improvement, called path compression, is a way of flattening the
structure of the tree whenever Find is used on it. The idea is that each

function Find(x)

 if x.parent != x

 x.parent := Find(x.parent)

 return x.parent

Power Set

P – Power set operator, unary operator (takes 1 input). P(x) is the “set of

 all subsets of x”
P (X) = {A: A ⊆ X}

Example: X = {a, b, c}
Example: P (ℕ)

Variant notation: P (X) = 2X

Notation is suggestive of size –
For X finite, |P (X) |= 2|X|

16

Zermello-Frankel Set Theory
See https://en.wikipedia.org/wiki/Zermelo%E2%80%93Fraenkel_set_theory
for a nice description of the axioms.

 9.

https://en.wikipedia.org/wiki/Zermelo%E2%80%93Fraenkel_set_theory

